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NASA TT F-10,827 

DIFFERENCE METHODS OF SOLVING THREE-DIMENSIONAL PROBLEMS I N  
GAS DYNAMICS 

K. I. Babenko, V .  V. Rusanov 

ABSTRACT. The problem of s t a t i o n a r y  f low about an  a rb i -  
t r a r y  smooth body by a supersonic  stream of non-viscous non- 
thermoconductive gas  i s  examined. It i s  assumed that t h e  body 
i s  s t a t i o n a r y ,  and t h e  stream far i n  f r o n t  of t h e  body i s  uni- 
form. 
t h e  bow wave and t h e  body up t o  t h e  next  d i s c o n t i n u i t y .  

The s tudy i s  r e s t r i c t e d  t o  flow i n  t h e  reg ion  between 

L e t  u s  f i r s t  of a l l  d i scuss  c e r t a i n  i d e a s  which u n d e r l i e  t h e  compilat ion /247* 
of numerical  a lgor i thms f o r  so lv ing  a problem i n  three-dimensional flow. 

A b a s i c  c h a r a c t e r i s t i c  of t h e  numerical  a lgor i thm i s  i t s  e f f i c i e n c y .  

E f f i c i ency  i n  a lgor i thm ope ra t ion  may be  descr ibed  by t h e  number of elem- 
e n t a r y  arithmetic and l o g i c  opera t ions  necessary t o  d e r i v e  a s o l u t i o n  of t h e  
s p e c i f i e d  accuracy -- i . e . ,  roughly speaking, i t  may be  descr ibed  by machine 
o p e r a t i o n a l  time requ i r ed  t o  so lve  a problem wi th  t h e  s p e c i f i e d  accuracy. 

S ince  t h e  degree of maximum e r r o r  must monotonically decrease  as t h e  in-  
terval of the d i f f e r e n c e  network becomes smaller i n  an i n t e l l i g e n t  numerical  
a lgo r i thm, the  number of elementary opera t ions  N as a func t ion  of t h e  s p e c i f i e d  
e r r o r  E comprises a rough estimate of ope ra t iona l  e f f i c i e n c y .  The economy o r  
e f f i c i e n c y  concept i s  a n  asymptot ic  one, i .e . ,  i t  is  important t o  u s  how N ( s )  
i n c r e a s e s  when E + 0. It i s  i n c o r r e c t  t o  d e s c r i b e  t h e  a lgor i thm by t h e  q u a n t i t y  
N ( E )  f o r  a g iven  v a l u e  of E, as i s  evident  from t h e  most elementary examples. 
Thus, i n  a problem involving a search  f o r  f u n c t i o n  minima, t h e  func t ions  of one 
o r  two v a r i a b l e s  may be  d i r e c t l y  f ac to red ,  b u t  t h i s  f a c t o r i n g  cannot be done 
f o r  f u n c t i o n s  of a l a r g e  number of v a r i a b l e s .  

Another i l l u s t r a t i o n  which is  c lose r  t o  us  i s  t h e  boundary v a l u e  problem 
f o r  a system of non l inea r  d i f f e r e n t i a l  equat ions.  
unique a lgor i thm f o r  so lv ing  such a system. However, i f  t h i s  f i t t i n g  i s  e a s i l y  
accomplished f o r  low-order systems, i t  is p r a c t i c a l l y  impossible  when t h e r e  are 
even t e n  parameters  if t h e r e  are no s u f f i c i e n t  reasons f o r  l i m i t i n g  t h e  r eg ion  
of parameter  change from t h e  very  beginning, i . e . ,  f o r  approximately prespec i fy-  
i ng  t h e  parameter  va lues  wi th  apprec iab le  accuracy. 
need t o  know i n  advance t h e  na tu re  of t he  s o l u t i o n  sought.  

F i t t i n g  i s  a more o r  less 

This amounts p a r t l y  t o  t h e  

It is  remarkable i n  d i f f e r e n c e  s o l u t i o n s  t h a t  I n  N ( E )  rises l i n e a r l y  as 
I n  1 / s  grows l a r g e r ,  an& t h e r e f o r e r d i f f e r e n c e  methods e s s e n t i a l l y  permit  E t o  
v a r y  wide ly  without  t h e  t i m e  requi red  t o  s o l v e  t h e  problem growing t o  a s t r o -  
nomical  p ropor t ions .  

* Numbers i n  t h e  margin i n d i c a t e  pagina t ion  i n  t h e  o r i g i n a l  f o r e i g n  text. 
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It may seem t h a t  i t  is  r a t h e r  meaningless t o  make demands on accuracy 
which exceed t h e  requirements of p rac t i ce .  This  is  i n  f a c t  n o t  so. 

(1) Since w e  are so lv ing  a problem which is p h y s i c a l l y  i d e a l i z e d  t o  a 
c e r t a i n  degree,  w e  must i n  p r i n c i p l e  f ind  i t  p o s s i b l e  t o  c a r r y  out  t h e  cal- 
c u l a t i o n  wi th  a degree of e r r o r  less than t h e  e r r o r  in t roduced  by t h e  phys ica l  
i d e a l i z a t i o n ,  s o  t h a t  w e  may s t a t e  t h e  problem more p r e c i s e l y .  

I 2 4 8  

(2) Very o f t e n  t h e  dec i s ions  being sought have a number of s i n g u l a r i t i e s  
and s u b t l e  d e t a i l s ,  and when w e  do not  take t h e  l a t te r  i n t o  proper cons ide ra t ion  
we may be  mistaken i n  t h e  va lues  of t h e  f u n c t i o n a l s  which are requi red  f o r  
p r a c t i c a l  n e c e s s i t i e s .  
u l a r i t y ,  then  i n  p r i n c i p l e  a s m a l l  i n t e r v a l  i n  t h e  neighborhood of t h e  s ing-  
u l a r i t y  i s  requi red .  

It is  clear t o  everyone t h a t  i f  a s o l u t i o n  has  a s ing-  

(3) 
ments r e s u l t s  i n  t h e  f a c t  t h a t  computations are a b a s i c  source  of in format ion  
f o r  engineers .  
e r r o r  are of primary s ign i f i cance .  I n  g a s  dynamics, w e  may a l s o  have t h e  
s i t u a t i o n  where computations may i n  p r i n c i p l e  r e p l a c e  experimentat ion.  

I n  some f i e l d s  of technology, t h e  i m p o s s i b i l i t y  of conducting exper i -  

Therefore ,  t h e  q u a l i t y  of t h e  computations and t h e  degree of 

The conclus ions  which may be drawn from numerical computations o r  approx- 
imate methods are n o t ,  however, l o g i c a l l y  s u b s t a n t i a t e d  u n t i l  t h e  degree of 
e r r o r  has  been t h e o r e t i c a l l y  ca l cu la t ed .  In a l l  t h e  problems analyzed below -- 
and t h i s  i s  a l s o  t r u e  of a l l  gas-dynamics problems -- no t  only has  no t h e o r e t i -  
cal  e r r o r  estimate been obtained t o  da t e ,  b u t  a l s o  t h e  convergence of d i f f e r e n c e  
equat ion  s o l u t i o n s  toward the  boundary-value problem s o l u t i o n  has  n o t  even been 
proven. 

Computational accuracy must t he re fo re ,  f o r  t h e  t i m e  being,  be examined 
e m p i r i c a l l y  by subd iv i s ion  of the  d i f f e r e n c e  network i n t e r v a l s  and subsequent 
s tudy  of t h e  n a t u r e  of t h e  e r r o r .  Consequently, t h e  numerical  a lgor i thm must 
t o l e r a t e  a n  apprec i ab le  decrease  i n  network i n t e r v a l s .  

From t h e  above, i t  is  clear what fundamental s i g n i f i c a n c e  may be  ass igned  
t o  t h e  n a t u r e  of t h e  i n c r e a s e  i n  func t ion  N(E) as E decreases .  It is  our  
op in ion  t h a t ,  w i t h  proper  formulat ion of the numerical  a lgor i thm,  d i f f e r e n c e  
methods g i v e  an o rde r  of i n c r e a s e  N(E) which is  c l o s e  t o  optimum, i f  t h e  comp- 
a r i s o n  is  made f o r  a c e r t a i n  class of problem. 

Numerical a lgor i thms f o r  so lv ing  gas-dynamics problems u l t i m a t e l y  reduce 
t o  a lgo r i thms  f o r  so lv ing  several boundary-value problems f o r  a system of 
q u a s i - l i n e a r  equat ions .  
t h e r e f o r e  r e q u i r e s  a profound understanding of t h e  n a t u r e  and cha rac t e r  of t h e  
corresponding boundary-value problems. 

Successful  formulat ion of t h e  numerical  a lgor i thm 

It is  a matter of gene ra l  knowledge t h a t  v a r i o u s  types  of equat ions  i n  
s u p e r s o n i c  and subsonic  flow reg ions  lead t o  e s s e n t i a l l y  d i f f e r e n t  mathematical  
s t a t e m e n t s  of t h e  problems. 
are of  t h e  hyperbol ic  type ,  w e  may conduct t h e  c a l c u l a t i o n  i n  success ion  from 
some i n i t i a l  s u r f a c e  downstream. This apprec iab ly  s i m p l i f i e s  t h e  matter. I n  

I n  t h e  case of supersonic  flow, where t h e  equat ions  
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the case of equations of the mixed type, the 
problem must be solved in the whole region at 
once. In our opinion, the adjustment method 
is the best for such problems. The essence 
of this method consists of the fact that a 
stationary or self-similar solution is found 
as the limit of a non-stationary or non-self- 
similar solution. 

In the numerical solution process, we 
have always ascertained the fact that the non- 
stationary solution converges to a stationary 

- ----_ b solution, or a non-self-similar solution con- 
verges to a self-similar solution. Moreover, 
in the numerical solution it was found that 
the limiting equations are strongly attracting, 
and this last circumstance plays a decisive 
role in the employment of the adjustment 

c method. ------ 

Let us speak about this in somewhat 
greater detail. 
solving boundary-value problems for non-linear 
equations, we ultimately reduce the matter to 
solution of a system of non-linear equations 
of an order which is often rather high. This 

Actually, we en- 

In the difference method of 

9 ge < 9 

Figure 1 

system of algebraic equations clearly has no unique solution. 
counter a problem of this sort in any iteration method of solving the problem. 
And it is extraordinarily important that the solution we seek be strongly con- 
vergent. 
written, numerical algorithm. 
by turning to the physical meaning of the problem. 

/ 2 4 9  
There are no general methods for ascertaining this fact in the formally- 

We therefore believe that the way out may be found 

The adjustment method may be treated as a certain iteration method having a 
physical meaning, and it MY be assumed that the existence of a limit in the 
physical problem guarantees convergence of these iterations. This hypothesis is 
brilliantly confirmed. The empirically ascertained property that stationary 
solutions are strongly convergent ensures convergence to the needed solution. 

Application of iteration methods permits reduction of the solution of non- 
linear algebraic equations to the solution of linear equations for which the well- 
developed method of matrix fitting or a combination of the fitting method plus 
iterations may be used. 

Let us take a look at the problem of stationary flow about an arbitrary 
smooth body by a supersonic stream of non-viscous non-thermoconductive gas. We 
will regard the body as stationary, and the stream far in front of the body as 
uniform. 
perturbed uniform stream in front ‘of the body will be separated from the region 
of perturbed flow by the bow shock wave. 

In supersonic flow about a body, it is known that the region of the un- 

We will restrict ourselves to studying flow in the region included between 



0 ' C  
I 

Figure 2 

the bow wave and the body right up to the next discontinuity, if one occurs. 
supersonic flow, perturbations may be transmitted only downstream, if they are 
not so large as to completely change the qualitative flow pattern. Therefore, 
the flow in the region in question may be found without solving the problem as 
a whole. 
Depending on the shape of the forward part of the body and the Mach number of 
the unperturbed flow, the forward part may be either detached (Figure la, b) or 
attached (Figure IC). 
the bow wave (the dashed line on the diagram indicates the boundary of this 
region). 

In 

In a number of cases, this is sufficient for practical purposes. 

In cases a and b, a subsonic region is generated behind 

In case cy the flow has a singularity at the apex of the body. 

Because of this nature of the flow, it is convenient to divide the problem 

Let us divide this region by some surface II into the regions G1 and 
of determining the stream in the region between the shock wave and the body into 
two parts. 
G2, in such a way that at all points of ll the flow velocities will be supersonic, 
and surface II will be of the three-dimensional type. Determination of flow in 
region G1 may be reduced to solving a boundary-value problem which differs for 
cases a, b, and c. After solving this problem, let us find the values of 
velocity 8, pressure p, and density p on surface II, after which the flow in 
region G may be found. 

in 2 

We will dwell first on the method of determining flow in region GI f-khe case 
when the body has a blunt nose (Figure la), and between the shock wave and the 
body a mixed flow occurs. 
a boundary-value problem for a system of quasi-linear equations of the mixed 
type with three independent variables. 
sought is limited, in the general case, by the body surface, the shock wave, 
and the limiting characteristic surface, while the shape of the two latter sur- 
faces is not known in advance. 

Determination of flow in G1 may be reduced to solving 

The region in which the solution is /250 

Limiting conditions are set only on the part of the region boundary in 
which the solution is sought. 
the effect of each point is here extended to the whole region; this must also 
occur for stable difference system. 

In contrast to equations of the hyperbolic type, 

These two conditions cause certain 
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difficulties in the numerical solution of the problem, especially in the three- 
dimensional case where it is required that a very considerable number of non- 
linear difference equations be solved. 
simplified in the case where the bow section of the body is spherical in shape. 
Specifically, if the line of intersection of the body surface with the limiting 
characteristic surface delimiting the region of influence is entirely situated 
on the spherical part in this case, the flow in the mixed region will be axisym- 
metrical relative to the direction of the velocity vector of the incident stream. 
For blunt cones and other bodies with spherical blunt forebodies, the axial sym- 
metry in the nose region may be maintained up to substantial angles of attack, 
even exceeding half the aperture angle of the cone. 
region will, moreover, of course be essentially three-dimensional. With the 
above in mind, we will study the calculation method only for axisymmetrical flow 
around a blunt body with arbitrary bluntness. 

The situation as a rule is appreciably 

Flow in the supersonic 

Let us examine a body of rotation situated in a supersonic gas stream whose 
velocity of v ,  is directed along the body's axis of symmetry. Let p, and p, be 
pressure and density in the unperturbed flow. We will consider the unperturbed 
gas to be ideal with an adiabatic exponent of k, = 1.4. Let z,r,Q be cylind- 
rical coordinates with axis z along the axis of the streamlined body. By virtue 
of the problem symmetry, the bow wave will also be a surface of rotation, and it 
is sufficient to examine the flow 19 = const. in any one meridian plane (Figure 2a). 

Let u, v be components of velocity vector 7 along axes z ,  r; let p be 
pressure; and let p be density. 
as functions of z ,  r is formulated as follows: 

The boundary value problem for these quantities 

(1) Desired functions u, v, p ,  p in the region between the shock wave 
and the body satisfy equations 

Here 
- = u - + v - p  d dz d , a 
dt 

c2 = c2 (p, p)  is the square of the speed of sound. 

I 

(1) I251 

(2) The desired functions satisfy the following conditions: 

(a) On the body surface 
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(2) 
V, = - u sin cp + u cos cp = 0, 

where Vn is the normal velocity component on the body and (I is the angle between 
axis z and a tangent to the body; 

(b) On the shock wave: 

pvv = pmvv,; 

v, = v*m; 

Here V, and V, are normal and tangential components of velocity on the shock 

wave; h (p,p) is enthalpy per unit of gas mass; V, = -u sin $ + v cos $; V, = 
u cos 4 + v sin 4, $ is the angle between axis z and 
wave. 

( c )  On the axis of symmetry v = 0 .  

It should be borne in mind that the value of (I is 
the body surface, while the valuesf J, is not known in 
ermined at the same time as the wave shape. 

the tangent to the shock 

known at any point of 
advance, and may be det- 

I The above-formulated conditions are not at all formally connected with the 
presence of the sonic line and the limiting characteristic inside the region. 
However, in solving the problem,their position may be taken into account in 
some way or other, depending on the method of solution. Thus, if -- in solving 
the problem -- we remain within the limits of stationary equations,it is almost 
unavoidably necessary to trace the exact position of sonic line BC and limiting 
characteristic BD. In solving the problem by the adjustment method, it is un- 
necessary to determine the exact position of the limiting characteristic, but 
we must make sure that its whole course is within the region in which the so l -  
ution is sought. 

The physical fact underlying the adjustment method is that under real con- 
ditions,stationary flow around a body always occurs as a limit to non-stationary 
flow during sufficiently protracted motion of the body at a constant speed and 
with constant external medium parameters. 
limiting flow does not depend on the manner in which entrance into the station- 
ary regime occurred. 
boundary conditions on the body and at infinity the solution of the non-station- 
ary flow problem wil l  tend toward the solution of the stationary problem as 
time t tends toward infinity, regardless of what the original flow was. 
equations of non-stationary gas flow are always hyperbolic, the matter reduces /252 
to solving a boundary-value problem for a hyperbolic system of differential 
equations. A mathematical formulation of the non-stationary problem is immedi- 
ately obtained from the above-formulated stationary problem. 

It is, moreover, assumed that this 

It is, therefore, to be expected that under constant 

Since 

In the differential 
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equat ions ,  however, t h e  t o t a l  d e r i v a t i v e  must be  w r i t t e n  w i t h  due regard  f o r  t h e  
e x p l i c i t  dependence of t h e  func t ions  on time d / d t  = 3 / a t  + U *  3 / 3 2  + v*3/3r.  

The boundary cond i t ions  on t h e  body and on t h e  a x i s  remain unchanged. 

V '  
Under boundary condi t ions  on t h e  wave V - D must be  w r i t t e n ,  i n s t e a d  of V 

where D i s  shock wave v e l o c i t y .  
V 

When t = 0 , t h e  p o s i t i o n  of t h e  shock wave and t h e  d i s t r i b u t i o n  of a l l  fun- 
c t i o n s  i n  t h e  reg ion  between wave and body are p resc r ibed .  For convenience of 
t h e  numerical  s o l u t i o n ,  t h i s  reg ion  should a l s o  be  bounded on t h e  s i d e  of super- 
son ic  flow. For t h i s  purpose,  i t  is  s u f f i c i e n t  t o  draw l ine  KK' l y i n g  o u t s i d e  
t h e  reg ion  of i n f luence ,  such t h a t  t h e  c y l i n d r i c a l  s u r f a c e  cons t ruc ted  on it 
( p a r a l l e l  t o  axis t) i s  of t h e  three-dimensional type.  This  ensures  c o r r e c t  
formulat ion of t h e  problem i n  t h e  absence of any boundary condi t ions  on KK' 
(Figure l a ) .  

L e t  u s  go on t o  no te  t h a t ,  i f  t h e  problem is  regarded i n  i t s  s t r i c t  math- 
ematical formula t ion ,  t h e  va lues  of the hydrodynamic q u a n t i t i e s  on the body w i l l  
i n  gene ra l  no t  be  c l o s e  t o  those  which should p r e v a i l  i n  s t a t i o n a r y  flow. 
fo l lows  from the f a c t  that  -- because the  normal component of v e l o c i t y  on t h e  
body s u r f a c e  equals  ze ro  -- t h e  change i n  entropy on t h e  wave does n o t  reach t h e  
body i n  a f i n i t e  t i m e  i n t e r v a l ,  and entropy on t h e  body s u r f a c e  keeps t h e  same 
va lue  which it had i n  the i n i t i a l  da t a .  
u t i o n  t o  t h e  non-stat ionary problem tends non-uniformly t o  s t a t i o n a r y  flow as 
t += a. 

This  

S t r i c t l y  speaking,  t h e r e f o r e ,  the so l -  

When t h e  problems are being solved by t h e  adjustment method, t h i s  e f f e c t  i s  
p a r a s i t i c ,  and t h e  d i f f e r e n c e  system must be s o  cons t ruc ted  t h a t  t h e  c o r r e c t  
en t ropy  va lue  i s  e s t a b l i s h e d  on t h e  body. 
en t ropy  p e r t u r b a t i o n s  are t r ansmi t t ed  from wave t o  body i n  t h e  d i f f e r e n c e  equa- 
t i o n s  i n  a f i n i t e  number of s t e p s  i n  time. 

This  may be r e a d i l y  done, s i n c e  

L e t  u s  desc r ibe  t h e  algori thm f o r  numerical  s o l u t i o n  of t h e  problem. L e t  
u s  i n t roduce  a new system of c u r v i l i n e a r  coord ina te s  S , y , t ,  l i nked  t o  t h e  wave 
form i n  such a way that i n  t h e  new coord ina tes  t h e  reg ion  between t h e  body and 
wave w i l l  have f ixed  boundaries.  For t h i s  purpose l e t  us  s e t  

= [G (y) + EF ( Y p  t)I Y. 
I n  t h e  new coord ina te s ,  t h e  body equat ion is 5 = 0 ,  whi le  t h e  wave equat ion  i s  
5 = 1. 
y = Y (Figure 2b) .  Funct ions (y) and G(y) determine t h e  shape of t h e  body and 
are g iven .  Funct ion F ( y , t )  determines the wave form and is  found toge the r  w i t h  
u ,  v, p ,  p ,  i n  t h e  process  of t h e  so lu t ion .  The q u a n t i t i e s  $ and D which enter 
i n t o  t h e  boundary cond i t ions  are expressed by 3F/3y and 3F/at  by means of ele- 
mentary formulas .  

The a x i s  of symmetry corresponds t o  l i n e  y = 0,  and l i n e  KK' t o  l i n e  

In  t h i s  way, t h e  condi t ions  on t h e  wave con ta in  equat ions  f o r  determining 
/253 f u n c t i o n  F(y,  t ) .  It i s  convenient t o  u s e  ma t r ix  n o t a t i o n  t o  t ransform t h e  - 

equa t ion ;  t hen  system (1) w i l l  be  w r i t t e n  as 
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where 

'u 0 p-1 0 '  
o u o  0 

? J = ' ' p c a O  0 ' -  
0 u p-1 0 
0 pc3 u 0 
o p o  u 

' 

% =  

After  t ransformation t o  new v a r i a b l e s ,  equat ions (5) 

,p 0 0 u ,  

ax ax 
dt dY 

+ E.-  + J? = 0, 

assume t h e  form 

The d e r i v a t i v e s  of 5, y wi th  r e spec t  t o  z ,  r ,  t are computed by the  ord inary  
r u l e s  and i n  t h e  last a n a l y s i s  a r e  e x p l i c i t l y  expressed by 5, y ,  func t ions  8 ,  G,F, 
and t h e i r  d e r i v a t i v e s .  
those  on t h e  body a r e  w r i t t e n  i n  t h e  form 

The boundary condi t ions on t h e  wave remain as be fo re ;  

(7) zyu - rpu = 0. I 

We should n o t e  t h a t  t h e  descr ibed change of v a r i a b l e s  i s  not  a t  a l l  t h e  
I n  every case ,  t h e  only one p o s s i b l e ,  and i s  given here  only a s  an example. 

s e l e c t i o n  of a p a r t i c u l a r  change of v a r i a b l e s  i s  s t i p u l a t e d  by t h e  demands of 
t h e  s p e c i f i c  problem. 

L e t  u s  in t roduce  i n t o  space 5, y ,  t t h e  rec tangular  network with i n t e r v a l s  
A t  = r ,  At = hl = 1 / M ,  ny = h2 = Y/L 

t" = at; Ern = mh,; yi = lh,; f (Em, yr; t") = f:,l: x1 = t/h,; x ,  = z/h,. 
W e  w i l l  write t h e  d i f f e rence  system f o r  t he  formulated problem i n  s i m i l a r  

f a s h i o n  as i n  (Ref. 1 )  f o r  the case  of t hee -d imens iona l  s t a t i o n a r y  flow. T h e  
r o l e  of v a r i a b l e  x is  played i n  our case by t ,  and that of v a r i a b l e  8 by 
v a r i a b l e  y. I n  t h e  n o t a t i o n  of (Ref. l), t h e  i t e r a t i v e  d i f f e rence  system looks 
1 i k e  
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Here S and T are s h i f t  ope ra to r s  p e r  u n i t  w i t h  r e spec t  t o  m and 2 r e s p e c t i v e l y ;  

I i s  t h e  i d e n t i t y  ope ra to r ;  Xn+(''is t h e  value of v e c t o r  X 

and a, 6, u are system parameters ,  whi le  ci + B = 1, a > 0 ,  B >-O. There i s  a 
s l i g h t  d i f f e r e n c e  between t h e  manner in .which  t h e  d i f f e r e n c e  system i s  w r i t t e n  
i n  (Ref. 1 )  o n . t h e  l i n e  J" when 2 = L ,  where t h e  d e r i v a t i v e  wi th  r e spec t  t o  y 
i s  rep laced  by t h e  one-sided d i f f e r e n c e  r e l a t i o n s h i p  

onttle q t h  i t e r a t i o n ;  
m , z  m,Z  

f"+(9)I - f n + ( q )  
1 

m+ -, L-1 m+ -i-, L a 
N 1 

ha ( g ) n + ( 9 ' 1  - 
m+ 2.  L 

No boundary condi t ions  are posed when Z = L. 

f o r  Xn+(q+l)is solved s e p a r a t e l y  f o r  each Z by the f i t t i n g  method descr ibed  i n  

(Ref. 1). 

The system of a l g e b r a i c  equat ions  

m , Z  

The method of so lv ing  equat ions  on the  wave i s , o f  cour se ,d i f f e ren t  from 
t h a t  descr ibed  i n  (Ref. l), where t h e  s t a t i o n a r y  wave i s  examined. I n  the non- 
s t a t i o n a r y  case, i t  proves t o  be more convenient n o t  t o  reduce the problem t o  
t h e  s o l u t i o n  of a cubic  equat ion ,  bu t  t o  make d i r e c t  u se  of Newton's method f o r  
f i n d i n g  t h e  s o l u t i o n  of t h e  e n t i r e  non-linear system. 

n+(q+l) i s  found by i n t e g r a t i n g  t h e  equat ion  aF/a t  = Z Fn+(q+l), t h e  va lue  of F 

wi th  r e s p e c t  t o  t ,  e .g . ,  by formula 

1 2 5 4  

A f t e r  determining 

Ft t , l  
I 

~ j n + ( 9 + 1 )  = F ;  + t (,F;,;(~+~' + PFtr). 1 (9) 
L e t  u s  n o t e ,  however, t h a t  i n  some cases ,  i n  c a l c u l a t i n g  wi th  t h i s  formula,  

t h e  v a l u e s  of F 

graph of func t ion  F wi th  respect t o  y assumes a saw-toothed appearance.  

o t h e r  words, the p a r a s i t i c  t e r m  6FZ = c (- 1) 

FZ. 
f i c i e n t  c (gene ra l ly  dependent on 2) is  of o r d e r  O(h2). 

e r r o r  of t h e  system i s  of t h e  second order  w i t h  r e s p e c t  t o  h t h e r e f o r e ,  ad- 

d i t i o n  6F 

I n  o r d e r  t o  e l i m i n a t e  t h i s  d e f e c t ,  when F n+(q+l) i s  ca l cu la t ed ,  t h e  presence of 

/ p a r a s i t i c  t e r m  i n  Fn+(') must be  taken i n t o  cons ide ra t ion ,  and i t  must some- 

how be n e u t r a l i z e d .  

and a l l  va lues  of 

compuation is  f i n i s h e d  when t h e  systems are so lved  f o r  a l l  va lues  of z. 
a f t e r  completion of t h e  p re sc r ibed  number of i t e r a t i o n s  Q,  we f i n i s h  computing 

prove t o  f l u c t u a t e  d r a s t i c a l l y  from p o i n t  t o  p o i n t ,  and t h e  2 
I n  

Z 

Without pausing t o  s tudy  t h i s  ques t ion ,  l e t  u s  merely remark t h a t  coef- 

i s  added t o  t h e  exac t  va lues  of 

I 

But t h e  approximation 

2; 
may cons iderably  exceed i t  and reduce t h e  computational accuracy. 2 

t h e  t , Z  
Z 
Afte r  t h e  system f o r  t h e  wave i s  so lved ,  t h e r e  i s  a reverse 

n+(q+l) are ca l cu la t ed  f o r  m = M-1,  . . . , l , O .  The i t e r a t i v e  9, z 
F i n a l l y ,  

n+l = ,n+(Q) n+l n+(Q) t h e  n + 1 l a y e r ,  assuming t h a t  X y Fj  = FZ . m,Z m , Z  
n The computation of X cont inues u n t i l  i n e q u a l i t y  max 11 x::? - xz,, II< e lis 
m , z  m, l  . 

f u l f i l l e d ,  where n and E are given va lues .  
0 
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Figure 3 

Figure  3 i l l u s t r a t e s  t h e  r e s u l t s  der ived from computing f low about t h e  1255 
nose of the body w i t h  a s e c t o r  of nega t ive  curva ture  when M, = 10. 

i n t e r e s t i n g  t o  n o t e  t h a t  t h e  arrangement of the c h a r a c t e r i s t i c s  here i s  the 
same as f o r  a sphere  f o r  apprec iab ly  smaller  M,. 

It i s  

Proceeding now t o  compute flow i n  region G2,we would l i k e  t o  remark t h a t  

t h e  numer ica l  a lgor i thm f o r  t h i s  w a s  f i r s t  proposed i n  (Ref. 2) .  (Ref. 11, as 
a l r e a d y  s t a t e d  above, p r e s e n t s  it i n  d e t a i l  and p resen t s  the needed s t u d i e s  t o  
s u b s t a n t i a t e  i t .  I n  t h e  fol lowing,  we w i l l  hold t o  t h e  n o t a t i o n  adopted the re .  

L e t  u s  pause on several a spec t s  of t h e  problem of supersonic  flow of an  
i d e a l  gas  p a s t  smooth bodies ,  and s p e c i f i c a l l y  on computing t h e  flow p a s t  long 
smooth bod ies  and three-dimensional flow p a s t  cones. 

F i r s t  of a l l ,  w e  w i l l  say  a few words about t h e  connect ion between t h e  
computat ions i n  G1 and G2. I n t o  reg ion  G as i n t o  G w e  in t roduce  t h e  cy l in-  

d r i c a l  c o o r d i n a t e s  z ,  r ,  3 .  Since axis z i n  r eg ion  G must always have i t s  

cour se  i n s i d e  t h e  body,z, r , d  w i l l ,  i f  need be,  d i f f e r  from t h e  coord ina tes  i n  
G 

t r a n s i t i o n  from G 

which i n v o l v e  t h e  need t o  pass  from one three-dimensional network t o  another .  
Let us ana lyze  t h e  case where t h e  body has a s p h e r i c a l  forebody and t h e  flow i n  

2' 1' 

2 

( le t  u s  d e s i g n a t e  them by z ' ,  r ' ,  9 ' .  Therefore ,  i n  p u t t i n g  t h e  automatic  

t o  G2 i n t o  e f f e c t ,  a number of t e c h n i c a l  d i f f i c u l t i e s  arise 
1 

1 
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t h e  forward s e c t i o n  i s  axisymmetrical .  As s u r f a c e  II, l e t  us  t a k e  a p l ane  per- 
pendicular  t o  t h e  z axis. 
on t h e  s p h e r i c a l  p a r t  of t h e  b lun tness ,  t he  flow i n  p lane  It w i l l  b e  found from 
a computation of t h e  axisymmetrical - f low around a sphere.  To c a l c u l a t e  f low 
i n  reg ion  G w e  must knowv,  p ,  p on l i n e s  19 = cons t ,  l y ing  i n  p lane  TI. The 

image of each such l i n e  i n  p lane  z ' ,  r '  gives a c e r t a i n  curve (hyperbola) ,  
a ( z ' ,  r ' )  = cons t  which w i l l  i n t e r s e c t  the  body and t h e  shock wave. 

I f  t h e  l i n e  of i n t e r s e c t i o n  of II and t h e  body l i es  

2' 

Line 5 = cons t  i n  p l ane  ll w i l l  change i n t o  curve B ( z ' ,  r ' )  = cons t  i n  
p lane  z ' ,  r ' .  

o rph ic  t o  t h e  reg ion  i n  p l ane  z ' ,  r '  de l imi ted  by t h e  shock wave, t h e  body, 
and t h e  two hyperbolae a ( z ' ,  r ' )  = const  corresponding t o  ang le  va lues  6 = 0 
and 6 = IT. Af te r  determining flow i n  t h e  mixed reg ion ,  w e  w i l l  d e r i v e  t h e  
- o r i g i n a l  d a t a  i n  t h e  supersonic  p a r t  of t h e  flow, and consequently w e  can f i n d  
V,  p ,  and p downstream by so lv ing  t h e  mixed problem f o r  t h e  hyperbol ic  system. 
It i s  easy  t o  in t roduce  new v a r i a b l e s  i n  p l ane  z ' ,  r '  so  t h a t  t h e  coord ina te  
l i n e s  w i l l  be one of t h e  r ays  y = cons t  ( l y i n g  i n  t h e  supersonic  reg ion)  and 
t h e  l i n e s  a = cons t  and B = const .  
v a r i a b l e s  by t h e  same a lgor i thm which i s  employed i n  reg ion  G2 ,  b u t  f o r  two 

independent v a r i a b l e s ,  we au tomat ica l ly  o b t a i n  V ,  p ,  and p i n  II. Here t h e  r o l e  
of " t i m e "  w i l l  be  played by coord ina te  z ,  and w e  w i l l  d e r i v e  t h e  va lues  of t h e  
d e s i r e d  func t ions  a t  t h e  p o i n t s  of t h e  d i f f e r e n c e  network which is  e r e c t e d  i n  
r eg ion  G U s e  of t h i s  procedure d isposes  wi th  t h e  need f o r  complex i n t e r p o l -  

a t i o n  w i t h  r e s p e c t  t o  t h r e e  independent v a r i a b l e s ,  and makes i t  p o s s i b l e  t o  
proceed au tomat i ca l ly  from computing reg ion  G1 t o  computing r eg ion  G when t h e  

problem i s  solved by a computer. 

Thus, reg ion  0 5 - -  5 5 1, 0 i_ - 9 5 - IT i n  p lane  II w i l l  be  homeom- 

By so lv ing  t h e  mixed problem i n  t h e s e  

- 

2' 

2 

A f t e r  ob ta in ing  t h e  s o l u t i o n  i n  p lane  II, w e  w i l l  f i n d  t h e  v a l u e s  of t h e  
downstream hydrodynamic q u a n t i t i e s  by employing t h e  numerical  a lgor i thm des- 
c r i b e d  i n  (Ref. 1). However, i f  t h e  body i s  s u f f i c i e n t l y  long ,  a number of 
d i f f i c u l t i e s  w i l l  arise i n  t h e  course  of t h i s  s o l u t i o n .  

L e t  u s  e x p l a i n  t h e  n a t u r e  of t hese  d i f f i c u l t i e s  by t h e  example of axisym- 
metrical f low p a s t  a b lun t  cone and a b l u n t  cy l inder .  A t  g r e a t  d i s t a n c e s  from 
t h e  nose ,  on t h e  body s u r f a c e  t h e r e  appears  a reg ion  wi th  marked en t ropy  and 
d e n s i t y  g r a d i e n t s  -- t h e  tu rbu len t  layer. I n  2,s coord ina te s ,  t h e  th i ckness  
of the t u r b u l e n t  l a y e r  tends  toward zero when z -f m, b u t  the body's d e n s i t y  
g r a d i e n t  tends  toward m. Therefore ,  wi th  l a r g e  z va lues  t h e  o rde r  t o  which 
t h e  d i f f e r e n t i a l  equat ions  are approximated by t h e  d i f f e r e n c e  equat ions  becomes 
smaller, and ,consequent ly , the  numerical s o l u t i o n  e r r o r  a l s o  i n c r e a s e s ,  u n l e s s  
w e  p rov ide  f o r  s p e c i f i c  refinement of t h e  mesh i n t e r v a l  a long t h e  coord ina te  
5 when t h e  5 v a l u e s  are small. The law of mesh i n t e r v a l  ref inement  along co- 
o r d i n a t e  5 is n o t  un ive rea l ly  v a l i d ,  
i t  i s  more convenient t o  r e p l a c e  t h e  non-uniform mesh wi th  r e s p e c t  t o  5 by new 
v a r i a b l e s  X,T-I,Z = x , ~  = (6,~) ca lcu la t ed  i n  such a way t h a t  t h e  uniform 
in te rva l  a long  coord ina te  
a long  coord ina te  5 a t  small  va lues  of 5 .  

/256 

b u t  depends on t h e  s o l u t i o n .  Technica l ly ,  

w i l l  g ive  the r e q u i s i t e  mesh interval  ref inement  

W e  w i l l  p r e s e n t  a f e w  computational examples. F igures  4 and 5 g ive  graphs 
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Figure  5 

s f  v a r i a b l e s  p and p obta ined  when a p e r f e c t  gas  flows p a s t  a b l u n t  cone wi th  

semi-aperture  ang le  of 15 when Mm = 10 and k = 1.4.  A l l  the l i n e a r  dimensions 

are g iven  i n  terms of t h e  r a d i u s  of t h e  s p h e r i c a l  b lun tness ;  p r e s s u r e  i s  s t a t e d  
i n  terms of p r e s s u r e  p, of unperturbed flow, and d e n s i t y  i s  g iven  i n  terms of 

d e n s i t y  p, of unperturbed flow. 

0 

F i g u r e  4 g i v e s  t h e  r e l a t i o n s h i p  of p ( z ,  6 )  as a func t ion  of 5 with  f i x e d  
v a l u e s  of z .  
p a r t  of the f i g u r e  shows t h e  c ross -sec t ion  of t h e  body wi th  a meridian s u r f a c e  
and t h e  shock wave trace. 

Coordinate  z i s  measured from t h e  nose of t h e  body. The upper 

The number on each curve i n d i c a t e s  t h e  va lue  of coord ina te  z. It i s  ap- 
p a r e n t  on t h e  drawing t h a t  when z 2 25 t h e  p r e s s u r e  hard ly  depends on z ( t h e  
d i f f e r e n c e  between p res su res  i n  t h e s e  c ross -sec t ions  i s  f r a c t i o n s  of one per- 
c e n t )  and co inc ides  wi th  i t s  l i m i t i n g  va lue  when z + m, i .e . ,  w i th  p r e s s u r e  on 
a sha rp  cone. The corresponding p i c t u r e  f o r  d e n s i t y  d i f f e r s  sha rp ly  from t h e  
preceding .  F igu re  5 shows r e l a t i o n s h i p  p ( z ,  e )  as a func t ion  of 5 with  
f i x e d  z v a l u e s .  The va lues  of coord ina te  z are ind ica t ed  on each curve.  It i s  
appa ren t  t h a t  even a t  a d i s t a n c e  of 100 g rada t ions  from t h e  body nose,  t h e  den- 
s i t y  i s  c l o s e  t o  i t s  l i m i t i n g  va lue  only when 5 > 0.1. 
a r e g i o n  forms wi th  sharp  p g r a d i e n t s  ( tu rbu len t  l a y e r ) .  
monotonic f u n c t i o n  of 5 wi th in  t h i s  layer. 

On t h e  body, however, 
Densi ty  i s  a non- 

1 2  
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I n  a d d i t i o n ,  F igure  5 c l e a r l y  shows formation of t h e  Gibbs phenomenon. 

Le t  u s  n o t e  

On 
t h e  p graph,  there is a c h a r a c t e r i s t i c  "hump" whose he igh t  does n o t  depend on 
z ,  and t h i s  "hump" s h i f t s  merely t o  t h e  l e f t  as z g e t s  l a r g e r .  
t h a t ,  depending on t h e  shape of t h e  body i n  i t s  nose,  t h e r e  may even be several 
of these humps, or they  may be a l t o g e t h e r  l ack ing ,  as i n  f low p a s t  a b l u n t  cy l in -  
d e r .  

For purposes  of comparison, F igure  6 shows t h e  r e l a t i o n s h i p  p ( z ,  6 )  i n  
t h e  case of flow p a s t  a cy l inde r  w i t h  s p h e r i c a l  b luntness  w i t h  t h e  same number 
of M, = 10. 

F i g u r e  7 shows t h e  r e l a t i o n s h i p  p (z,r - 1) (cy l inde r  r a d i u s  i s  un i ty )  as 
a f u n c t i o n  of r - 1 with  f i x e d  z .  
z = 500 t h e  p r o f i l e  of p i n  t h e  tu rbu len t  l a y e r  i s  only very  weakly dependent 
on z ,  w h i l e  a t  z = 1000 and z = 5000 the  p p r o f i l e s  co inc ide  wi th  a g r e a t  
number of i n d i c e s  and are congruent with t h e  asymptotic r e l a t i o n s h i p  p (r - 1). 
F igure  6 shows t h a t  w i th  va lues  of 5 c lose  t o  u n i t y  -- i .e . ,  i n  t h e  neighbor- 
hood of t h e  shock wave -- a reg ion  of flow overexpansion i s  formed a t  l a r g e  
v a l u e s  of z .  
p i c t u r e .  

Here i t  i s  c l e a r l y  ev ident  t h a t  even a t  

The formation of t h e  N-wave may be  t r aced  i n  a more d e t a i l e d  

I n  three-dimensional  f low,  t h e  ind ica t ed  e f f e c t s  appear s t i l l  more sha rp ly ,  
e s p e c i a l l y  a t  l a r g e  ang le s  of a t t a c k .  

1 3  



Figure  8 g ives  d e n s i t y  d i s t r i b u t i o n  
i n  f low p a s t  a b l u n t  cone wi th  semi-aper- 

t u r e  ang le  8 = 10' &t an angle  of a t t a c k  

a = 15' w i th  M, = 10. The f low p a t t e r n  

on t h e  upstream s i d e  d i f f e r s  g r e a t l y  from 
t h a t  on t h e  downstream s i d e .  Great den- 
s i t y  g r a d i e n t s  are formed on t h e  body sur -  
f ace  even a t  comparatively small z va lues ,  
and t h e r e f o r e  a non-uniform mesh must be 
used i n  p r a c t i c e  w i t h  z = 10. 

F igure  9 g ives  va lues  of c i r c u l a r  
v e l o c i t y  component w on t h e  body s u r f a c e  

i n  several c ross -sec t ions  f o r  6 = IO', 

M, = 10,  and a = 5, 10, and 15'. 

F igure  10 g ives  t h e  shapes of shock /259 

waves f o r  B = 10' and a = 15' wi th  M, = 4 

and M, = 10. 

qz 44 oe 0.8 I 

Figure  8 

The problem of three-dimensional 
flow p a s t  long smooth bodies  w i t h  t h e  
conic flows computed by t h e  adjustment 
method must be regarded i n  a d i f f e r e n t  
aspec t .  The adjustment process  may be 

fol lowed i n  the c a l c u l a t i o n  of t h e  b lunt  cone shown i n  F igures  4 and 5. These 
f i g u r e s  a l s o  show t h e  remarkable f a c t  t h a t  p r e s s u r e  co inc ides  wi th  g r e a t  ac- 
curacy w i t h  i t s  own l i m i t i n g  va lue  even a t  s m a l l  va lues  of coord ina te  z ,  whi le  
d e n s i t y  rather g r e a t l y  d i f f e r s  from i t s  l i m i t i n g  v a l u e  even at  l a r g e  z va lues  
and t ends  non-uniformly toward its l i m i t i n g  value.  

I n  c a l c u l a t i n g  flow around t h e  cone, however, w e  are i n t e r e s t e d  only i n  
t h e  l i m i t i n g  f low p a t t e r n ,  n o t  wi th  i t s  complex development. 
o r d e r  t o  exclude d i f f i c u l t i e s  i n  c a l c u l a t i n g  f low on t h e  body, we  must s t a r t  
w i t h  i n i t i a l  d a t a  which do n o t  l ead  t o  a complex f low p i c t u r e  i n  t h e  v i c i n i t y  
of t h e  body su r face .  In a d d i t i o n ,  the d i f f e r e n c e  system used t o  compute f low 
i n  t h e  t u r b u l e n t  l a y e r  main ta ins  a cons tan t  entropy va lue  on t h e  body wi th  
g r e a t  accuracy.  This  r e s u l t s  i n  sha rp  g r a d i e n t s  of t h e  q u a n t i t y  p .  I n  com- 
p u t i n g  c o n i c a l  f lows we must use  a d i f f e r e n c e  system which possesses  t h e  op- 
p o s i t e  p rope r ty  -- i t  r a p i d l y  " forge ts"  t h e  i n i t i a l  va lues  of entropy on t h e  
body and t r a n s m i t s  entropy pe r tu rba t ions  from shock wave t o  body a t  t h e  g rea t -  
est p o s s i b l e  speed. 

Therefore ,  i n  

I n  o r d e r  t o  o b t a i n  a c o r r e c t  va lue  of con ic  flow parameters  i n  t h e  whole 
c l o s e d  r e g i o n  w i t h i n  which t h e  v a r i a b l e s  5,s change, w e  must t a k e  i n t o  account 
t h e  s i n g u l a r i t i e s  of t h e  conic  sec t ions .  A.Ferr i  (Ref. 3) w a s  t h e  f i r s t  t o  
show t h a t  t h e  s o l u t i o n  t o  t h e  problem would be  d iscont inuous  i n  f low p a s t  round 
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Figure 10 

and e l l i p t i c a l  cones. 
t h e  c losed  r eg ion  0 
t h e  s u r f a c e  of t h e  cone 

Entropy S n e c e s s a r i l y  has  p o i n t s  of d i s c o n t i n u i t y  i n  
5 21, 0 5 6 -   IT. I n  a d d i t i o n ,  i t  may be shown t h a t  on 

as 
a€ - = 00, 

whi le  i n  t h e  v i c i n i t y  of t h e  cone su r face ,  a d r a s t i c  change i n  entropy and 
v e l o c i t y  components occurs  i n  a very  narrow l a y e r .  This  l a y e r  i s  convent iona l ly  
c a l l e d  t h e  t u r b u l e n t  l a y e r .  By i t s e l f ,  cond i t ion  (10) causes  no g r e a t  complica- 
t i o n s  i n  t h e  numerical  s o l u t i o n ,  bu t  the narrowness of t h e  t u r b u l e n t  l a y e r  
l e a d s  t o  marked complicat ions and r equ i r e s  t h e  development of a s u i t a b l e  
numer ica l  a lgor i thm.  Therefore ,  i n  the s o l u t i o n  process  w e  must t ake  i n t o  
c o n s i d e r a t i o n  t h e  presence of p a r t i c u l a r  entropy p o i n t s  and t h e  n a t u r e  of flow 
i n  t h e  t u r b u l e n t  l a y e r ,  i n  order  c o r r e c t l y  t o  o b t a i n  t h e  numerical  s o l u t i o n .  
Lack of space  f o r b i d s  us t o  d e s c r i b e  the numerical  a lgor i thm wi th  any degree 
of accuracy .  
i n t o  c o n s i d e r a t i o n  t h e  behavior of t h e  s o l u t i o n  i n  t h e  v i c i n i t y  of s i n g u l a r  

/260 
L e t  u s  merely n o t e  t h a t  i n  t h i s  a lgor i thm i t  i s  e s s e n t i a l  t o  t ake  
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Figure  11 Figure  1 2  

p o i n t s ,  w h i l e  their number, n a t u r e ,  s i n g u l a r i t i e s ,  and t h e  l o c a t i o n  of t h e  
s i n g u l a r  p o i n t  may b e  determined i n  t h e  computational process .  

The l o c a t i o n  of t h e  s i n g u l a r  po in t s  is  c l o s e l y  connected wi th  t h e  gene ra l  
p r o p e r t i e s  of t h e  boundary-value problem t o  which t h e  conic  flow problem re- 
duces.  In f a c t ,  t h e  i s o e n t r o p i c i t y  equat ion f o r  conic  flows has  t h e  form 

Therefore ,  a t  t h e  p o i n t s  of t h e  entropy d i s c o n t i n u i t y ,  it i s  necessary t h a t  
i s,u + 5 v + -  

r r 
Saw = 0 and w / r  = 0. 

As shown i n  (Ref. l ) ,  however, i t  is necessa ry , fo r  t h e  boundary-value 
problem t o  be  c o r r e c t , t h a t  cond i t ion  

be  f u l f i l l e d  i n  t h e  reg ion  between wave and body. 

Impairment of th is  cond i t ion  r e s u l t s  i n  i n c o r r e c t n e s s  of the boundary- 1261 
v a l u e  problem and i n s t a b i l i t y  i n  t h e  s o l u t i o n  t o  t h e  mixed problem f o r  t h e  
hydrodynamic equat ion  system 

A d z + B z + c d 4 + r  ax ax ax =o. 

It t h e r e f o r e  seems more probable  t h a t  t h e  s i n g u l a r  entropy p o i n t s  w i l l  

1 

F igu res  11-13 show some of t h e  r e s u l t s  der ived  from c a l c u l a t i n g  conic  flow. 

always l i e  on t h e  s u r f a c e  of t he  cone where by v i r t u e  of t h e  zero  flow cond i t ion  

Ezu + E f t !  + - Eew = 0. r 

(Ref. 1 )  con ta ins  sys t ema t i c  t a b l e s  of flow p a s t  c i r c u l a r  cones a t  angles  of 
a t t a c k .  
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I Figure  11 p r e s e n t s  a shock wave t r a c e  and t h e  l i n e s  of entropy l e v e l  
ob ta ined  i n  flow p a s t  a c i r c u l a r  cone with a serm-aperature ang le  of B = 25' 
a s c e r t a i n e d  a t  an angle  of a t t a c k  a = 20' w i th  a p e r f e c t  gas flowing p a s t  a t  
M, = 3. 

M, = 5 .  This  case i s  cha rac t e r i zed  by t h e  f a c t  t h a t  a reversed  p o s i t i o n  of 

t h e  shock wave t akes  p l ace .  On the  upstream s i d e ,  t h e  wave i s  less pressed  t o  
t h e  body than  on t h e  downstream s i d e .  

/262 
Figure  1 2  r ep resen t s  a similar p a t t e r n  f o r  B = 35', a = lo', and 

F igu re  13 g ives  t h e  r e l a t i o n s h i p  of d e n s i t y  w i t h i n  t h e  t u r b u l e n t  l a y e r  
f o r  an e l l i p t i c a l  cone wi th  semi-axis r a t i o  a /b  = 1.333. 
CL = 0 and M, = 5. I n  t h e  lower r i g h t  corner t h e  curves of p ( E ,  a ) , 0 L 5 5 1 
are shown as func t ions  of E with  f ixed  angle  3 . Angle 3 is  measured counter- 
c lockwise from t h e  major semi-axis. 
p (<, 8 )  w i t h  9 = cons t ,  bu t  t h e  s c a l e  on t h e  E a x i s  is  enlarged 1000 times, 
b u t  on ly  5 t i m e s  on t h e  p a x i s .  On the p a x i s  p o i n t s  a r e  arranged g iv ing  t h e  
a n g l e  i n  degrees .  Each po in t  g ives  the dens i ty  va lue  on t h e  cone s u r f a c e  f o r  
t h e  corresponding l i n e  3 = cons t .  

Angle of a t t a c k  i s  

The l a r g e r  graph d e p i c t s  t h e  same func t ions  

The r e s u l t s  presented  i n  t h i s  r epor t  were obta ined  by t h e  au thors  wi th  

1 7  



. 

L..e a s s i s t a n c e  of G.  P .  Voskresenskiy and A. 

~- ~ ~~ 

NASA TT F-10,827 

I Lyubimov. 

2 

REFERENCES 

1. Babenko, K.I., Voskresenskiy,  G.P., Lyubimov, A.N., Rusanov, V.V. P ros t r a -  
nstvennoye obtekaniye g lad ik ikh  t e l  ideal'nym gazom (Three-Dimensional 
Flow by an I d e a l  Gas P a s t  Smooth Bodies).  
1964. 

Three-Dimensional Flow P a s t  Bodies by a Gas Stream", Zhurnal V y c h i s l i t e l '  
noy Matematiki i Matematicheskoy F i z i k i ,  1, No. 6 ,  1961. 

3 .  F e r r i ,  A. Supersonic Flow Around C i rcu la r  Cones a t  Angles of Attack. NACA 
Techn. Rep., N 1045, 1951. 

I z d a t e l ' s t v o  "Nauka", Moscow, 

2. Babenko, K . I . ,  Voskresenskiy, G.P. "A Numerical Method of Ca lcu la t ing  

/Scientific TransZation Service- 
4849 TocaZoma Lane , , 
La Canada, CaZifornia 
NASw -1 496; 

18 


